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A number of hard-core lattice gases in which a lattice site can be occupied 
by a molecule in either of two possible orientations are proved to undergo 
order-disorder phase transitions. Examples include lattice gases of trigonal 
planar molecules on a triangular lattice, tetrahedral molecules on a body- 
centered cubic lattice, and linear molecules on a square lattice. 

K E Y  W O R D S  �9 Lat t ice gas ; lattice statistics ; hard core.  

1. I N T R O D U C T I O N  

Hard- sphe re  lat t ice gases with f i rs t -neighbor exclusions have been proved  to 
exhibi t  o r d e r - d i s o r d e r  phase  t rans i t ions  in two and three dimensions/1-~) 
A latt ice gas o f  hard ,  c ross -shaped  pen tamers  on a square lattice, equivalent  
to a ha rd -d i sk  lat t ice gas with first-, second-,  and  th i rd-ne ighbor  exclusions 

on a square lattice,  has  been shown to exhibi t  an o r d e r - d i s o r d e r  phase  
t ransi t ion/5)  Lat t ice  gases o f  ha rd-core  dimers  have been shown to have no 
phase  t rans i t ions  in one, two, or  three dimensions/6,7~ 

A mul t i componen t  lat t ice gas in which unlike molecules are excluded 
f rom occupying either the same site or  a pa i r  o f  f i rs t-neighbor sites has been 
shown to undergo a " d e m i x i n g "  t ransi t ion.  <8-1~ 

A number  o f  ha rd-core  molecular  lat t ice gases in which the lat t ice sites 
can be occupied by a molecule  having  either o f  two possible or ienta t ions  are 
shown in Sections 2 and 3 to  exhibi t  o r d e r - d i s o r d e r  phase t ransi t ions.  
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2. PHASE T R A N S I T I O N S  IN T W O - O R I E N T A T I O N  
LATTICE GASES 

Pirogov and Sinai ~11~ proved that certain Ising models on d-dimensional 
cubic lattices, d I> 2, at some magnetic field value have different equilibrium 
states depending on whether the system has the outer boundary spins all ( + )  
or all ( - ) .  Hence these Ising models undergo phase transitions. 

Consider a d-dimensional lattice A composed of two sublattices, such 
that the C first neighbors of  sites on one sublattice are sites on the other sub- 
lattice. Runnels (~) showed that a hard-sphere lattice gas on A with first- 
neighbor exclusions can be transformed to a one-component lattice gas on 
one sublattice having finite-range interactions. The resulting lattice gas was 
shown to be equivalent to an Ising model on a cubic lattice, which was in 
turn shown to satisfy the conditions of  the Pirogov-Sinai theorem if C > 2 
on the original lattice A. The original hard-sphere lattice gas on A was 
therefore demonstrated to have a phase transition if C > 2 and d 1> 2. 

Let us now define an n-orientation lattice gas as a lattice gas in which a 
lattice site can be occupied by a molecule in any one of n equivalent orienta- 
tions, such that C sites, the sites depending on the orientation of the molecule, 
are thereby excluded from simultaneous occupation by another molecule. 
Lattice gases of hard spheres are examples of  1-orientation lattice gases. 

Consider the lattice A formed by "spl i t t ing" each lattice site of  a 
2-orientation lattice gas into two separate sites, the occupancy of each of the 
two sites so formed being equivalent to occupancy of a site on the original 
lattice by a molecule in a certain one of the two possible orientations. The 
2-orientation lattice gas is then equivalent to a 1-orientation lattice gas on 
the " sp l i t "  lattice A. 

I f  A is composed of two sublattices (which can be viewed as cubic 
lattices) such that occupancy of a site on one of the two sublattices excludes 
simultaneous occupancy of C sites on the other sublattice, and such that the 
C sites excluded by any site can be superimposed by a suitable space group 
operation upon the C sites excluded by any other such site, then the proof  of  
Runnels ~4~ ensures the existence of a phase transition for the 1-orientation 
lattice gas on the split lattice. Hence the equivalent 2-orientation lattice gas 
has a phase transition as well. 

3. E X A M P L E S  

We shall consider examples of  2-orientation hard-core molecular lattice 
gases in which the center of a molecule on the lattice must occupy a lattice 
site, the bonds of the molecule pointing toward neighboring lattice sites. No 
more than one bond may occupy the space between any two neighboring 
lattice sites, and no more than one molecule may occupy a single lattice site. 
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The lattice of such a 2-orientation lattice gas can be split into the lattice 
A of an equivalent 1-orientation lattice gas by the procedure described in 
Section 2. 

For the examples we shall consider, A will be composed of two sub- 
lattices, which can be viewed as cubic lattices, such that a molecule occupying 
a site on one sublattice excludes C > 2 sites on the other sublattice. The 
exclusions of a site on either sublattice can, by a suitable space group opera- 
tion, be superimposed on the exclusions of any other site on the sublattice. 
The development of Section 2 is then sufficient to prove the existence of an 
order-disorder phase transition for these 2-orientation lattice gases. 

The first example is a 2-orientation lattice gas of trigonal planar mole- 
cules on a triangular lattice. The split lattice A of the equivalent 1-orientation 
lattice gas is composed of two triangular sublattices. Molecules in one orienta- 
tion occupying sites of the 2-orientation lattice gas correspond to molecules 
occupying one of the two sublattices. One sublattice, completely filled, is 
illustrated in Fig. 1. A unit cell of an equivalent cubic lattice is outlined on 
the sublattice in Fig. 1. 

The sites of one sublattice can be imagined to lie directly "be low"  the 
sites of the other. A molecule on one sublattice excludes four sites of the other 
sublattice, the site directly below it and the three sites toward which the bonds 
of the molecule occupying the site point. The exclusions of a site on one sub- 
lattice are translates of the exclusions of any other site on the sublattice. 
Since C -- 4, the development of Section 2 ensures that the model has a phase 
transition. This transition has been previously located numerically. ~12~ 

If a site of the 2-orientation lattice gas above can be simultaneously 
occupied by one molecule in each orientation, the model is then isomorphic 
to the hard-sphere lattice gas with first-neighbor exclusions on a hexagonal 
lattice. Since C = 3, Section 2 proves this model also has a phase transition, 
a fact which has been proven previously. (3'~ The transition for this model has 
also been located numerically. (la~ 

Consider next a lattice gas of tetrahedral molecules on a body-centered 

Fig. l. Completely filled triangular sublattice of 
the split lattice A of a 1-orientation lattice gas 
equivalent of the 2-orientation lattice gas of tri- 
gonal planar molecules on a triangular lattice. The 
sublattice can be viewed as a cubic lattice having 
a unit cell as outlined. 
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cubic lattice. The split lattice A of the equivalent 1-orientation lattice gas is 
composed of two body-centered cubic sublattices. This example is similar to 
the first in that molecules occupying sites on one sublattice correspond to 
molecules in one orientation in the original 2-orientation lattice gas. Each 
sublattice can be viewed as a cubic lattice with primitive vectors a, b, and 
c, which are given in terms of the primitive vectors x, y, and z of the body- 
centered cubic sublattice of A as a = x, b = y, and c = (l/2)(x + y + z). 

A molecule on one sublattice excludes five sites on the other sublattice, 
the site directly "be low"  it and the four sites toward which the bonds of the 
molecule point. The exclusions of a site on either sublattice are translates of 
exclusions of any other site on the sublattice. Since C = 5, the model has a 
phase transition. 

If  a site can be simultaneously occupied by one molecule in each orienta- 
tion, then C = 4 and the model is equivalent to the hard-sphere lattice gas 
with first-neighbor exclusions on the diamond lattice. Section 2 ensures a 
transition for this model as well, a fact which has been proven previously. (a,~) 

The last example we shall consider is a lattice gas of linear molecules on 
a square lattice. The split lattice A of the equivalent 1-orientation lattice gas 
is composed of two square sublattices. A molecule occupying a site of one 
sublattice excludes three sites of the other sublattice from simultaneous 
occupancy, the site directly "be low"  the center of the molecule and the two 
sites toward which the bonds of the molecule point. A filled sublattice of A 
is illustrated in Fig. 2. A unit cell of a corresponding cubic lattice is outlined 
on the sublattice in Fig. 2. The exclusions of one site on a sublattice are related 
to the exclusions of any other site on the sublattice by a combination of a 
translation and a rotation. Since C = 3, the model has an order-disorder 
phase transition. The existence of this transition has also been proved using 
the Dobrushin technique. (1'1~ 

If  a site can be simultaneously occupied by one molecule in each orienta- 
tion, the model is equivalent to the hard-sphere lattice gas in one dimension 
with first-neighbor exclusions (C = 2), which has no phase transition. 

l �9 I I ~  

Fig. 2. Completely filled square sublattice of 
the split lattice A of a 1-orientation lattice gas 
equivalent of the 2-orientation lattice gas of 
linear molecules on a square lattice. The sub- 
lattice can be viewed as a cubic lattice hav- 
ing a unit cell as outlined. 
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